Sixth Semester B.E. Degree Examination, May/June 2010 Design of Machine Elements - II

Time: 3 hrs .
Max. Marks:100

Note: 1.Answer any FIVE full questions, selecting at least TWO questions from each part. 2.Use of design data hand book is permitted.

PART - A

1 a. Derive expressions for extreme fibre stresses in a curved beam subjected to pure bending moment.
(08 Marks)
b. Determine the combined stresses at the inner and outer fibers at the critical section of a crane hook which is required to lift loads upto 50 kN . The hook has trapezoidal C.S. with inner and outer sides of 90 mm and 40 mm respectively. Depth is 120 mm . The center of curvature of the section is at a distance of 100 mm from the inner side of the section and the load line passes through the centre of curvature. Also, determine the factor of safety according to max shear stress theory, if $\tau_{\text {all }}=80 \mathrm{MPa}$.
(12 Marks)
2 a. With reference to pressure vessels, what is autofrettage? Explain.
(04 Marks)
b. A high pressure cylinder consists of an inner cylinder of $I D$ and $O D$ of 200 mm and 300 mm respectively. It is jacketed by an outer cylinder of OD 400 mm . The difference between the OD of the inner cylinder and inmer dian of the jacket before assembly is 0.25 mm . $\mathrm{E}=2.07 \times 10^{5} \mathrm{MPa}$. Calculate the shrink age pressure and stresses induced in cylinders due to shrinkage pressure. In service, the cylincer is further subjected to an internal pressure of 200 MPa . Plot the resultant stress distribution.
(16 Marks)
3 a. Derive an expression for shearing stress induced in a helical spring subjected to a compressive load, P
(07 Marks)
b. Write a note on Wahl stress correction factor.
(03 Marks)
c. A semi-elliptic multi-leaf spring is used for the suspension of the rear axle of a truck. It consists of two extra full length leaves and 10 graduated length leaves including the master leaf. The center to center distance between the spring eyes is 1.2 m . The leaves are made of steel with $\sigma_{y t}=1500 \mathrm{MPa} . \mathrm{E}=2.07 \times 10^{5} \mathrm{MPa}$ and FOS is 2.5 . The spring is to be designed for a maximum force of 30 kN . The leaves are prestressed so as to equalize stresses in all leaves. Determine
i) C.S. of leaves
ii) Initial nip
iii) Initial pre-load required to close the gap
iv) Deflection of the spring.
(10 Marks)

4 a. List the advantages and disadvantages of helical gears.
(03 Marks)
b. It is required to transmit 15 kW power from a shaft running at 1200 rpm to a parallel shaft with speed reduction of 3 . The centre distance of shafts is to be 300 mm . The material used for pinion in steel ($\sigma_{d}=200 \mathrm{MPa}$) and for gear is CI ($\left.\sigma_{d}=140 \mathrm{MPa}\right)$. Service factor is 1.25 and tooth profile is 20° full depth involute. Design the spur gear and check the design for dynamic load and wear.
(17 Marks)

PART - B

5 a. List the advantages and disadvantages of worm gear drive.
(03 Marks)
b. A pair of straight tooth bevel gears at right angles is to transmit 5 kW at 1500 rpm of the pinion at a speed ratio of 3 . Diameter of the pinion is 75 mm . The tooth form is $14 \frac{1}{2} 2^{\circ}$ involute. Pinion is made of steel $\left(\sigma_{d}=160 \mathrm{MPa}\right)$ and gear of CI $\left(\sigma_{d}=80 \mathrm{MPa}\right)$. Design the gear pair and check the design for dynamic load and wear.
(17 Marks)

6 a. Derive power transmitting capacity of a single plate clutch for
i) Uniform pressure condition and ii) Uniform wear condition.
(10 Marks)
b. A single block brake with a torque capacity of 250 N.m is shown Fig.Q6(b). The brake drum rotates at 100 rpm and the coefficient of friction is 0.35 . Calculate:
i) The actuating force and the hinge-pin reaction. ii) the rate of heat generated during the braking action and iii) The dimensions of the block, if the intensity of pressure between the block and brake drum is 1 MPa . The length of the block is twice its width
(10 Marks)

7 a. Derive the Petnoff's equation coefficient of friction, in a sliding contact bearing. (06 Marks)
b. Following data refers to 360° hydrodynamic bearing:

Radial load $=3.2 \mathrm{kN} \quad$ Journal speed $=1500 \mathrm{rpm}$
Journal diameter $=$ bearing length $=50 \mathrm{~mm}$ Radial clearance $=0.05 \mathrm{~mm}$
Viscosity of lubricant $=25 \mathrm{cP}$.
Assume that the total heat generated in the bearing is carried away by total oil flow in the bearing. Catculate:
i) Coefficientof friction
ii) Power loss in friction
iii) Minimum film thickness
iv) Flow requirement
v) Temperature rise.
(14 Marks)
8 a. Derive the expression for power rating of a V-belt drive.
(08 Marks)
b. The following data is given for a V-belt drive connecting a 20 kW motor to a compressor:

	Motor pulley	Compressor pulley
Pitch dia (mm)	300	900
Speed (rpm)	1440	480
Coefficient of friction	0.2	0.2

The center distance between pulleys is 1 m . C.S. of belt is trapezoidal with parallel sides being 12 mm and 22 mm respectively and depth is 14 mm . The density of the composite belt is $0.97 \mathrm{gm} / \mathrm{cc}$ and the allowable tension per belt is 850 N . Determine he number of belts required for this application.
(12 Marks)
\square

Sixth Semester B.E. Degree Examination, May/June 2010 Mechanical Vibrations

> Time: 3 hrs .

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Differentiate between : i) Linear and non linear vibrations ; ii) Deterministic and random vibrations.
(04 Marks)
b. A periodic motion observed on the oscilloscope is shown in Fig.1(b). Represent this motion by harmonic series.
(10 Marks)

Fig.1(b)

c. Determine the resultant of the following harmonie motions analytically $\mathrm{x}_{1}=3 \operatorname{Sin}(\mathrm{wt}+\pi / 3)$ and $\mathrm{x}_{2}=5 \operatorname{Sin}(\mathrm{wt}+2 \pi / 3)$.
(06 Marks)
2 a. Determine the natural frequency of spring - mass sytem taking the mass of the spring in to account.
(10 Marks)
b. A cylinder of radius r rolls without slipping on a cylindrical surface of radius R as shown in Fig.2(b). Derive the equation for natural frequency of small oscillaitons about the lowest point. Use energy method.
(10 Marks)

3 a. Write the differential equation of motion for the system shown in Fig.3(a). Determine : i) Undamped natural frequency ; ii) Critical damping coefficient ; iii) Damping ratio ; iv) Damped natural frequency.
(10 Marks)
b. In a single degree damped vibrating system, a suspended mass of 18 kg makes 10 oscillations in 8 seconds. The amplitude decreases to 25% of the initial value after 5 cycles. Determine : i) Damped natural frequency ; ii) Logarithmic decrement ; iii) Undamped natural frequency ; iv) Spring constant ; v) Damping coefficient.
(10 Marks)

4 a. A mass of 6.12 kg , suspended by a spring of stiffness $1.2 \mathrm{kN} / \mathrm{m}$, is forced to vibrate by a harmonic force of 10 N . Assume viscous damping of $86 \mathrm{Ns} / \mathrm{m}$. Find :
i) Frequency at resonance ; ii) Amplitude at resonance ; iii) Phase angle at resonance ; iv) Frequency corresponding to peak amplitude ; v) Peak amplitude.
(10 Marks)
b. A machine of mass 75 kg is mounted on springs of stiffness $12 \mathrm{kN} / \mathrm{cm}$ with an assumed damping factor 0.2 . A piston within the machine of mass 2 kg has a reciprocating motion with a stroke of 7.5 cm and a speed 50 Hz . Assuming the motion of the piston to be harmonic, determine : i) Amplitude of the machine ; ii) Transmissibility ; iii) Force transmitted to the foundation ; iv) The phase angle of the transmitted force with respect to the exciting force.
(10 Marks)

PART - B

5 a. Explain the working principle of vibrometer, with their range of frequency of operation.
(08 Marks)
b. A disc of mass 4 kg is mounted on a shaft midway between bearings which may be assumed to be simple supports. The bearing span is 0.5 m . The steel shaft is horizontal and is 1 cm in diameter. The centre of gravity of the disc is displaced 3 mm from the geometric centre. The equivalent viscous damping may be taken as $49 \mathrm{~N} . \mathrm{s} / \mathrm{m}$. If the shaft rotates at 800 rpm , find the maximum stress in the shaft and compare it with dead load stress in the shaft. Also find the power required to drive the shaft. Take $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
(12 Marks)
6 a. For the system shown in Fig.6(a), determine : i) Equation of motion ; ii) Natural frequencies ; iii) Normal modes of the system.
(08 Marks)

Fig.6(a)
b. What is a dynamic vibration absorber? Show that for such a system, it's natural frequency should be equal to the frequency of the applied force.
(12 Marks)
7 a. Determine the fundamental natural frequency of the system shown in Fig.7(a) by Stodola method.
(10 Marks)

b. Determine the fundamental natural frequency of the system shown in Fig.7(b) by Dunkerleys equation.
(10 Marks)
8 a. Derive the equation governing the longitudinal vibrations of the bar and obtain the general solution of the differential equation derived above.
(10 Marks)
b. Derive suitable expression for longitudinal vibrations for a rectangular uniform cross sectional bar of length l fixed at one end and free at the other end.
(10 Marks)

USN

06ME63

Sixth Semester B.E. Degree Examination, May/June 2010 Modeling and Finite Element Analysis

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO from each part.

PART - A

1 a. Using Rayleigh Ritz method, find the maximum deflection of a simply supported beam with point load at center.
b. Solve the following system of simultaneous equations by Gaussian elimination method.
$4 x_{1}+2 x_{2}+3 x_{3}=4$
$2 x_{1}+3 x_{2}-5 x_{3}=2$
$2 x_{1}+7 x_{2}=4$
(10 Marks)
2 a. Explain the descretization process. Sketch the different types of elements 1D, 2D, 3D elements used in the finite element analysis.
(06 Marks)
b. Considering for element, obtain the element stiffness matrix by direct stiffness approach. Comment on its characteristics.
(09 Marks)
c. Define a shape function. What are the properties that the shape function should satisfy?
(05 Marks)
3 a. Explain the convergence criteria with suitable examples and compatibility requirements in FEM.
(08 Marks)
b. Explain simplex, complex and multiplex elements using element shapes.
(06 Marks)
c. Explain linear interpolation, polynomials in terms of global coordinates for one dimensional simplex element.
(06 Marks)
4 a. Explain the cohcept of isoparametric, sub parametric and super parametric elements and their uses.
(06 Marks)
b. Derive the shape functions for a CST element and also the displacement matrix.
(08 Marks)
c. Derive the Hermite shape functions for a beam element.
(06 Marks)

PART - B

5 a. Find the shape functions at point P for the CST element shown in fig. Q5(a). Also find the area and Jacobian matrix for the element.
(10 Marks)

Fig.Q5(a)

b. Derive the stiffness matrix for a 2 - dimensional truss element.
(10 Marks)
6 a. Discuss the various steps involved in the finite element analysis of a one dimensional heat transfer problem with reference to a straight uniform fin.
(10 Marks)
b. Explain the finite element modeling and shape functions for linear interpolation of temperature field (one - dimensional heat transfer element).
(10 Marks)

7 a. Determine the nodal displacement and stresses in the element shown in fig. Q7(a).(10 Marks)

Fig.Q7(a)

$$
\begin{aligned}
& \mathrm{A}_{1}=500 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{2}=2000 \mathrm{~mm}^{2} \\
& \mathrm{E}_{1}=100 \mathrm{GPa} \\
& \mathrm{E}_{2}=200 \mathrm{GPa}
\end{aligned}
$$

b. Obtain the overall stiffness matrix of the truss elements shown in fig. Q7(b). All the elements have an area of $200 \mathrm{~mm}^{2}$ and elements (1) and (2) are 500 mm long. $\mathrm{E}=200 \mathrm{GPa}$.
(10 Marks)

Fig.Q7(b)

8 A composite wall consists of three materials as shown in fig. Q8. The outer temperature $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$. Convective heat transfer takes place on the inner surface of the wall with $\mathrm{T}_{00}=$ $800^{\circ} \mathrm{C}$ and $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Determine the temperature distribution on the wall.
(20 Marks)

USN

06ME64

Sixth Semester B.E. Degree Examination, May/June 2010 Mechatronics and Microprocessors

Time: 3 hrs .
Max. Marks:100

Abstract

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Explain with the block diagram, the basic elements of a measurement system. (08 Marks)
b. Explain with the block diagram, how a microprocessor control system is used to control the focusing and exposure in an automatic camera.
(12 Marks)
2 a. Define the following terms : i) Hysteresis error ii) Repeatability.
(04 Marks)
b. Explain with a sketch, an eddy current proximity sensor.
(06 Marks)
c. Explain the working principle of Hall effect sensor. How can this sensor be used to determine the level of fuel in an automobile fuel tank?
(10 Marks)
3 a. Write short notes on relays. (05 Marks)
b. Explain the principle of brushless D.C. permanent magne motor. (08 Marks)
c. Explain the principles of operation of the yariable reluctance stepper motor.
(07 Marks)
4 a. With suitable examples, explain some of the processes that can occur in conditioning a signal.
(10 Marks)
b. Explain how high voltages and wrong polarity may be protected against, by the use of a zener diode circuit.
(06 Marks)
c. Define filtering. Mention the four different types of filters.
(04 Marks)

PART - B

5 a. Explain the evolution of microprocessors.
(07 Marks)
b. With the truth table, for two inputs explain : i) AND - gate ii) OR - gate. (08 Marks)
c. Discuss the XOR - gate and write down its truth table.
(05 Marks)

6 a. Explain for a microprocessor, the role of accumulator register and program counter register.
b. State any four differences betweena microprocessor and a microcontroller.
c. Write short notes on 'BUS' related to 8085 - microprocessor.

7 a. Explain the commonly used instructions that may be given to a microprocessor under
i) Data transfer
ii) Arthmetic.
(10 Marks)
b. With a flow chart, develop a program for the addition of two 8 -bit numbers located in different memory addresses and storage of the result back into memory.
(10 Marks)
8 a. List the four operations commonly performed by a CPU.
(04 Marks)
b. Explain the terms : synchronous and asynchronous data transmission. (06 Marks)
c. Explain the five different conditions, under which, microprocessor controlled data transfer can takes place.
(10 Marks)

06ME65

Sixth Semester B.E. Degree Examination, May/June 2010 Heat and Mass Transfer

Time: 3 hrs.
Max. Marks:100

Note: 1.Answer any FIVE full questions, selecting at least TWO questions from each part. 2.Use of heat transfer data handbook is permitted.

PART - A

1 a. State the laws governing three basic modes of heat transfer.
(06 Marks)
b. Derive the general three-dimensional conduction equation in Cartesian coordinates and state the assumptions made.
(08 Marks)
c. A composite wall is made up of three layers of thicknesses $25 \mathrm{~cm}, 10 \mathrm{~cm}$ and 15 cm of material A, B and C respectively. The thermal conductivities of A and B are $1.7 \mathrm{~W} / \mathrm{mK}$ and $9.5 \mathrm{~W} / \mathrm{mK}$ respectively. The outside surface is exposed to air at $20^{\circ} \mathrm{C}$ with convection coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the inside is exposed to gases at $1200^{\circ} \mathrm{C}$ with a convection coefficient of $28 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the inside surface is at $1080^{\circ} \mathrm{C}$. Determine the unknown thermal conductivity of layer made up of material C.
(06 Marks)

2 a. It is desired to increase the heat dissipation over the surface of an electronic device of spherical shape of 5 mm radius exposed to convection with $\mathrm{h}=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ by encasing it in a transparent spherical sheath of $\mathrm{K}=0.04 \mathrm{~W} / \mathrm{mK}$. Determine the diameter of the sheath for maximum heat flow. For a temperature drop of $120^{\circ} \mathrm{C}$ from the device surface, determine the heat flow for bare and sheathed device.
(10 Marks)
b. A $\operatorname{rod}(\mathrm{K}=200 \mathrm{~W} / \mathrm{mK}) 5 \mathrm{~mm}$ in diameter and 5 cm long has its one end maintained at $100^{\circ} \mathrm{C}$. The surface of the rod is exposed to ambient air at $25^{\circ} \mathrm{C}$ with convection heat transfer coefficient of $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Assuming other end insulated, determine
i) The temperature of the rod at 20 mm distance from the end at $100^{\circ} \mathrm{C}$.
ii) Heat dissipation rate from the surface of the rod and
iii) Effectivenes
(10 Marks)

3 a. A thermocouple junction, which may be approximated as a sphere, is to be used for temperature measurement in a gas stream. The convection coefficient between the junction surface and the gas is $400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the junction thermophysical properties are $\mathrm{K}=20 \mathrm{~W} / \mathrm{mK}, \mathrm{C}_{\mathrm{p}}=400 \mathrm{~J} / \mathrm{kgK}, \rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the junction diameter needed for the thermocouple to have a time constant of 1 s . If the junction is at $25^{\circ} \mathrm{C}$ and is placed in a gas stream that is at $200^{\circ} \mathrm{C}$, how long will it take for the junction to reach $199^{\circ} \mathrm{C}$? (10 Marks)
b. A large slab of wrought iron is at a uniform temperature of $375^{\circ} \mathrm{C}$. The temperature of one surface of this slab is suddenly changed to $75^{\circ} \mathrm{C}$. Calculate the time required for the temperature to reach $275^{\circ} \mathrm{C}$ at a depth of 5 cm from the surface and the quantity of energy transferred per unit area of the surface during this period. Take $\mathrm{K}=60 \mathrm{~W} / \mathrm{mK}$ and $\alpha=1.626 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
(10 Marks)
a. With reference to fluid flow over a flat plate, discuss the concept of velocity boundary layer and thermal boundary layer, with necessary sketches.
(05 Marks)
b. Air at $20^{\circ} \mathrm{C}$ flows over both sides of a surface of a flat plate measuring $0.2 \mathrm{~m} \times 0.2 \mathrm{~m}$. The drag force was 0.075 N . Determine the velocity gradient at the surface if kinematic viscosity has a value of $15.06 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and density $=1.205 \mathrm{~kg} / \mathrm{m}^{3}$. Also determine the drag coefficient, if the free stream velocity is $40 \mathrm{~m} / \mathrm{s}$.
(07 Marks)
c. A horizontal plate $1 \mathrm{~m} \times 0.8 \mathrm{~m}$ is kept in a water tank, with the top surface at $60^{\circ} \mathrm{C}$ providing heat to warm stagnant water at $20^{\circ} \mathrm{C}$. Determine the value of convection coefficient. Repeat the problem for heating on bottom surface.
(08 Marks)

PART - B

a. Air at $20^{\circ} \mathrm{C}$ and 1 atm flows over a flat plate at $35 \mathrm{~m} / \mathrm{s}$. The plate is 75 cm long and is maintained at $60^{\circ} \mathrm{C}$. Assuming unit depth in the z-direction, calculate the heat transfer from the plate.
(08 Marks)
b. Air at 2 atm and $200^{\circ} \mathrm{C}$ is heated as it flows through a rube with a diameter of 25 mm at a velocity of $10 \mathrm{~m} / \mathrm{s}$. Calculate the heat transfer per uni length of tube if a constant heat flux condition is maintained at the wall and the wall temperature is $20^{\circ} \mathrm{C}$ above the air temperature all along the length of the tube. How much would the bulk temperature increase over a 3 m length of the tube?
(12 Marks)
6 a. Derive an expression for LMTD of a paraller flow heat exchanger. State the assumptions made.
(08 Marks)
b. Water to water heat exchanger of a counter flow arrangement has heating surface area of $2 \mathrm{~m}^{2}$. Mass flow rates of hot and cold fluids are $2000 \mathrm{~kg} / \mathrm{hr}$ and $1500 \mathrm{~kg} / \mathrm{hr}$ respectively. Temperatures of hot and cold fluids at inlet are $85^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ respectively. Determine the : amount of heat transferred from hot to cold water and their temperatures at the exit if the overall heat transfer ofefficien $\mathrm{V}=1400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
(12 Marks)
7 a. Distinguish between the nucleate boiling and film boiling.
(06 Marks)
b. State and explain the Fick's law of diffusion.
(04 Marks)
c. A vertical plate $30 \mathrm{~cm} \times 30 \mathrm{~cm}$, is exposed to steam at atmospheric pressure. The plate temperature is $98^{\circ} \mathrm{C}$. Calculate the heat transfer and the mass of steam condensed per hour.
(10 Marks)
8 a. With reference to thermal radiation, explain the following terms:
i) Black body and gray body
ii) Specular and diffuse surface
iii) Radiosity and irradiation.
(06 Marks)
b. Two parallel black plates $0.5 \mathrm{~m} \times 1 \mathrm{~m}$ are spaced 0.5 m apart. One plate is maintained at $1000^{\circ} \mathrm{C}$ and the other at $500^{\circ} \mathrm{C}$. What is the net radiant heat exchange between the two plates?
(06 Marks)
c. Two very large parallel planes, with emissivities 0.3 and 0.8 exchange heat. Find the percentage reduction in heat transfer when a polished aluminium radiation shield $(\epsilon=0.04)$ is placed between them.
(08 Marks)

Sixth Semester B.E. Degree Examination, May/June 2010 Non Traditional Machining

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Discuss briefly, how the non - traditional machining processes are classified.
(08 Marks)
b. Give the differences between conventional and non - conventional machining processes.
(06 Marks)
c. Explain the working of water jet machining, with a neat sketch.
(06 Marks)
2 a. Discuss the effects of the following parameters on MRR as applied to USM process.
i) Amplitude and frequency of vibrations
ii) Grain size
ii) Applied static load
iv) Effect of slurry.
(08 Marks)
b. With a neat sketch, explain the tool feed system used in USM
(06 Marks)
c. Briefly discuss the advantages and disadvantages of USM.
(06 Marks)
3 a. With a neat sketch, explain briefly the working of Abrasive Jet Machining (AJM). (06 Marks)
b. List the variables which affect the Metal Remoyal Rate (MRR) and explain any three.
(06 Marks)
c. Mention any two advantages, disadvantages and applications of AJM.
(08 Marks)
4 a. Explain with a neat sketch, the Electro Chenical Machining (ECM) process. (08 Marks)
b. Explain the elements of ECM process.
(08 Marks)
c. What are the functions of electrolyte Mention any two electrolytes used in ECM process.
(04 Marks)

PART - B

5 a. With neat sketches, explain the different steps involved in chemical blanking.
(10 Marks)
b. Discuss the following in the Chemical Machining (CHM) process i) Etchants ; ii) Maskants.
(10 Marks)
6 a. Explain with a neat sketch, the mechanism of metal removal in EDM process.
(08 Marks)
b. Explain flushing, and explain any two methods of flushing in EDM process.
(06 Marks)
c. What are the requirements of dielectric fluid? Mention any two dieelectric fluids used in EDM process.
(06 Marks)
7 a. With a neat sketch, explain the Plasma Arc Machining (PAM) process.
(08 Marks)
b. Discuss some of the important considerations in the design of plasma torch.
(06 Marks)
c. Mention any two advantages, disadvantages and applications of PAM process.
(06 Marks)
8 a. With a neat sketch, explain the mechanism of metal removal in laser beam machining (LBM) process.
(08 Marks)
b. With a neat sketch, explain how the electron beam is generated in the electron beam machining process.
(08 Marks)
c. Mention the advantages and limitations of the EBM process.
(04 Marks)

